

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is ac.
- An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y).

Examples

Example 1 Factorise $15x^2y^3 + 9x^4y$

$15x^2y^3 + 9x^4y = 3x^2y(5y^2 + 3x^2)$	The highest common factor is $3x^2y$. So take $3x^2y$ outside the brackets and then divide each term by $3x^2y$ to find the terms in the brackets
---	---

Example 2 Factorise $4x^2 - 25y^2$

$4x^2 - 25y^2 = (2x + 5y)(2x - 5y)$	This is the difference of two squares as the two terms can be written as $(2x)^2$ and $(5y)^2$
-------------------------------------	--

Example 3 Factorise $x^2 + 3x - 10$

b = 3, ac = -10	1 Work out the two factors of
	ac = -10 which add to give $b = 3$
	(5 and -2)
So $x^2 + 3x - 10 = x^2 + 5x - 2x - 10$	2 Rewrite the <i>b</i> term $(3x)$ using these
	two factors
= x(x+5) - 2(x+5)	3 Factorise the first two terms and the
	last two terms
=(x+5)(x-2)	4 $(x + 5)$ is a factor of both terms

Example 4 Factorise $6x^2 - 11x - 10$

$$b = -11, ac = -60$$
So
$$6x^{2} - 11x - 10 = 6x^{2} - 15x + 4x - 10$$

$$= 3x(2x - 5) + 2(2x - 5)$$

$$= (2x - 5)(3x + 2)$$

- 1 Work out the two factors of ac = -60 which add to give b = -11 (-15 and 4)
- 2 Rewrite the *b* term (-11x) using these two factors
- **3** Factorise the first two terms and the last two terms
- 4 (2x-5) is a factor of both terms

Example 5 Simplify $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$

$$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$$

For the numerator:

$$b = -4$$
, $ac = -21$

So

$$x^2 - 4x - 21 = x^2 - 7x + 3x - 21$$

 $= x(x - 7) + 3(x - 7)$
 $= (x - 7)(x + 3)$

For the denominator:

$$b = 9$$
, $ac = 18$

$$= 2x(x+3) + 3(x+3)$$

$$= (x+3)(2x+3)$$
So
$$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9} = \frac{(x-7)(x+3)}{(x+3)(2x+3)}$$

$$= \frac{x-7}{2x+3}$$

 $2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$

- 1 Factorise the numerator and the denominator
- 2 Work out the two factors of ac = -21 which add to give b = -4 (-7 and 3)
- 3 Rewrite the *b* term (-4x) using these two factors
- 4 Factorise the first two terms and the last two terms
- 5 (x-7) is a factor of both terms
- 6 Work out the two factors of ac = 18 which add to give b = 9 (6 and 3)
- 7 Rewrite the *b* term (9*x*) using these two factors
- **8** Factorise the first two terms and the last two terms
- 9 (x + 3) is a factor of both terms
- 10 (x + 3) is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

Practice

1 Factorise.

a
$$6x^4y^3 - 10x^3y^4$$

$$\mathbf{c} \qquad 25x^2y^2 - 10x^3y^2 + 15x^2y^3$$

2 Factorise

a
$$x^2 + 7x + 12$$

$$\mathbf{c} = x^2 - 11x + 30$$

e
$$x^2 - 7x - 18$$

$$\mathbf{g} \quad x^2 - 3x - 40$$

a
$$36x^2 - 49y^2$$

c
$$18a^2 - 200b^2c^2$$

4 Factorise

a
$$2x^2 + x - 3$$

c
$$2x^2 + 7x + 3$$

e
$$10x^2 + 21x + 9$$

b
$$4x^2 - 81y^2$$

b $21a^3b^5 + 35a^5b^2$

b $x^2 + 5x - 14$

d $x^2 - 5x - 24$

h $x^2 + 3x - 28$

f $x^2 + x - 20$

b $6x^2 + 17x + 5$

d $9x^2 - 15x + 4$

 $\mathbf{f} = 12x^2 - 38x + 20$

5 Simplify the algebraic fractions.

$$\mathbf{a} \qquad \frac{2x^2 + 4x}{x^2 - x}$$

$$\mathbf{c} \qquad \frac{x^2 - 2x - 8}{x^2 - 4x}$$

$$e \frac{x^2 - x - 12}{x^2 - 4x}$$

b
$$\frac{x^2 + 3x}{x^2 + 2x - 3}$$

$$\mathbf{d} \qquad \frac{x^2 - 5x}{x^2 - 25}$$

$$\mathbf{f} \qquad \frac{2x^2 + 14x}{2x^2 + 4x - 70}$$

6 Simplify

$$\mathbf{a} \qquad \frac{9x^2 - 16}{3x^2 + 17x - 28}$$

$$\mathbf{c} \qquad \frac{4 - 25x^2}{10x^2 - 11x - 6}$$

$$\mathbf{b} \qquad \frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$$

$$\mathbf{d} \qquad \frac{6x^2 - x - 1}{2x^2 + 7x - 4}$$

Extend

7 Simplify $\sqrt{x^2 + 10x + 25}$

8 Simplify
$$\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$$

Take the highest common factor outside the bracket.

Hint

Answers

1 **a**
$$2x^3y^3(3x-5y)$$

c
$$5x^2y^2(5-2x+3y)$$

$$7a^3b^2(3b^3 + 5a^2)$$

2 **a**
$$(x+3)(x+4)$$

$$c (x-5)(x-6)$$

e
$$(x-9)(x+2)$$

$$g (x-8)(x+5)$$

b
$$(x+7)(x-2)$$

d
$$(x-8)(x+3)$$

f
$$(x+5)(x-4)$$

h
$$(x+7)(x-4)$$

3 **a**
$$(6x-7y)(6x+7y)$$

c
$$2(3a-10bc)(3a+10bc)$$

b
$$(2x - 9y)(2x + 9y)$$

4 **a**
$$(x-1)(2x+3)$$

c
$$(2x+1)(x+3)$$

e
$$(5x+3)(2x+3)$$

b
$$(3x+1)(2x+5)$$

d
$$(3x-1)(3x-4)$$

f
$$2(3x-2)(2x-5)$$

5 **a**
$$\frac{2(x+2)}{x-1}$$

$$\mathbf{c} \qquad \frac{x+2}{x}$$

$$e \frac{x+3}{x}$$

b
$$\frac{x}{x-1}$$

$$\mathbf{d} \qquad \frac{x}{x+5}$$

$$\mathbf{f} = \frac{x}{x-5}$$

6 a
$$\frac{3x+4}{x+7}$$

$$c = \frac{2-5x}{2x-3}$$

b
$$\frac{2x+3}{3x-2}$$

$$\mathbf{d} \qquad \frac{3x+1}{x+4}$$

7
$$(x+5)$$

8
$$\frac{4(x+2)}{x-2}$$