Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50} = \sqrt{25 \times 2}$	1 Choose two numbers that are factors of 50. One of the factors must be a square number
$=\sqrt{25} \times \sqrt{2}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=5 \times \sqrt{2}$	3 Use $\sqrt{25} = 5$
$=5\sqrt{2}$	

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=7\times\sqrt{3}-2\times2\times\sqrt{3}$	3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$=7\sqrt{3}-4\sqrt{3}$	
$=3\sqrt{3}$	4 Collect like terms

Example 3 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$ $= \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4}$ = 7 - 2 = 51 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$ 2 Collect like terms: $-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	1 Multiply the numerator and denominator by $\sqrt{3}$
$=\frac{1\times\sqrt{3}}{\sqrt{9}}$	2 Use $\sqrt{9} = 3$
$=\frac{\sqrt{3}}{3}$	

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$

$$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

$$= \frac{\sqrt{2} \times \sqrt{4 \times 3}}{12}$$

$$= \frac{\sqrt{2} \sqrt{2} \sqrt{3}}{12}$$

$$= \frac{\sqrt{2} \sqrt{3}}{6}$$
1 Multiply the numerator and denominator by $\sqrt{12}$
2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12. One of the factors must be a square number
3 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
4 Use $\sqrt{4} = 2$
5 Simplify the fraction:

$$\frac{2}{12}$$
 simplifies to $\frac{1}{6}$

Example 6	Rationalise and simplify $\frac{3}{2+\sqrt{5}}$			
	$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1	Multiply the numerator and denominator by $2 - \sqrt{5}$	
	$=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$	2	Expand the brackets	
	$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$	3	Simplify the fraction	
	$4 + 2\sqrt{5} - 2\sqrt{5} - 5$ = $\frac{6 - 3\sqrt{5}}{-1}$	4	Divide the numerator by -1	
	$= 3\sqrt{5} - 6$		Remember to change the sign of all terms when dividing by -1	

Practice

2

1	Simplify.			Hint
	a $\sqrt{45}$	b	$\sqrt{125}$	One of the two
	$\mathbf{c} = \sqrt{48}$	d	$\sqrt{175}$	numbers you choose at the start
	$\mathbf{e} = \sqrt{300}$	f	$\sqrt{28}$	must be a square
	$\mathbf{g} = \sqrt{72}$	h	$\sqrt{162}$	number.

Sim	plify.		
a	$\sqrt{72} + \sqrt{162}$	b	$\sqrt{45}-2\sqrt{5}$
c	$\sqrt{50} - \sqrt{8}$	d	$\sqrt{75} - \sqrt{48}$
e	$2\sqrt{28} + \sqrt{28}$	f	$2\sqrt{12} - \sqrt{12} + \sqrt{27}$

Watch	out!
·· aten	out

Check you have chosen the highest square number at the start.

3	Expand and simplify.		
	a	$(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$	
	c	$(4-\sqrt{5})(\sqrt{45}+2)$	

b	$(3+\sqrt{3})(5-\sqrt{12})$
d	$(5+\sqrt{2})(6-\sqrt{8})$

4 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{5}}$$
b $\frac{1}{\sqrt{11}}$ c $\frac{2}{\sqrt{7}}$ d $\frac{2}{\sqrt{8}}$ e $\frac{2}{\sqrt{2}}$ f $\frac{5}{\sqrt{5}}$ g $\frac{\sqrt{8}}{\sqrt{24}}$ h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.

a
$$\frac{1}{3-\sqrt{5}}$$
 b $\frac{2}{4+\sqrt{3}}$ **c** $\frac{6}{5-\sqrt{2}}$

Extend

- 6 Expand and simplify $(\sqrt{x} + \sqrt{y})(\sqrt{x} \sqrt{y})$
- 7 Rationalise and simplify, if possible.

a
$$\frac{1}{\sqrt{9}-\sqrt{8}}$$
 b $\frac{1}{\sqrt{x}-\sqrt{y}}$

Answers

1	a	3√5	b	5√5
	c	$4\sqrt{3}$	d	5√7
	e	10√3	f	2√7
	g	6√2	h	9√2
2	a	15√2		√5
	c	3√2	d	$\sqrt{3}$
	e	6√7	f	5√3
3	a	-1	b	$9 - \sqrt{3}$
	c	$10\sqrt{5}-7$	d	$9 - \sqrt{3}$ 26 - 4 $\sqrt{2}$
4	a	$\frac{\sqrt{5}}{5}$		$\frac{\sqrt{11}}{11}$
	c	$\frac{2\sqrt{7}}{7}$	d	$\frac{\sqrt{2}}{2}$
	e	$\sqrt{2}$	f	√5
	g	$\sqrt{2}$ $\frac{\sqrt{3}}{3}$	h	$\frac{1}{3}$
5	a	$\frac{3+\sqrt{5}}{4}$	b	$\frac{2(4-\sqrt{3})}{13}$ c $\frac{6(5+\sqrt{2})}{23}$
6	x	у		

7 a $3+2\sqrt{2}$ **b** $\frac{\sqrt{x}+\sqrt{y}}{x-y}$

